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QUESTION 1

Paul has all his marbles. There are p of them. Bowen has 7
fewer than Paul. How many marbles does Bowen have?



QUESTION 2

So there’s this number. You can:

add 4 to it. . .

subtract 4 from it. . .

multiply it by 4. . .

divide it by 4. . .

And all four answers add up to exactly 60. What is the number?



QUESTION 3

A. Is (66,43) on the line through (7,3) and (10,5)?
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QUESTION 3

A. Is (66,43) on the line through (7,3) and (10,5)?

B. Is (107,68) on the line through (7,3) and (10,5)?

C. What’s an equation of the line through (7,3) and (10,5)?



QUESTIONS, REDUX

1. Paul has all his marbles. There are p of them. Bowen has
7 fewer than Paul. How many marbles does Bowen have?

2. So there’s this number. You can:
add 4 to it. . .
subtract 4 from it. . .
multiply it by 4. . .
divide it by 4. . .

And all four answers add up to exactly 60. What is the
number?

3. A. Is (66, 43) on the line through (7, 3) and (10, 5)?
B. Is (107, 68) on the line through (7, 3) and (10, 5)?
C. What’s an equation of the line through (7, 3) and (10, 5)?



THE HABITS OF MIND APPROACH

What mathematicians most wanted and needed from me was
to learn my ways of thinking, and not in fact to learn my proof of
the geometrization conjecture for Haken manifolds.

—William Thurston
On Proof and Progress in Mathematics



CONNECTING CONTENT TO MATHEMATICAL PRACTICES

The Standards for Mathematical Practice describe ways in
which developing student practitioners of the discipline of
mathematics increasingly ought to engage with the subject
matter as they grow in mathematical maturity and expertise. . . .
Designers of curricula, assessments, and professional
development should all attend to the need to connect the
mathematical practices to mathematical content in mathematics
instruction.

—CCSSM, p. 8 (2010)



COMMON CORE: MATHEMATICAL PRACTICES

Eight attributes of mathematical proficiency:

1. Make sense of complex problems and persevere in
solving them.
Mathematically proficient students start by explaining to
themselves the meaning of a problem and looking for entry
points to its solution. They analyze givens, constraints,
relationships, and goals . . . They consider analogous
problems, and try special cases and simpler forms of the
original problem in order to gain insight into its solution.
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Eight attributes of mathematical proficiency:

1. Make sense of complex problems and persevere in
solving them.
Mathematically proficient students start by explaining to
themselves the meaning of a problem and looking for entry
points to its solution. They analyze givens, constraints,
relationships, and goals . . . They consider analogous
problems, and try special cases and simpler forms of the
original problem in order to gain insight into its solution.

One CCSSM author says this is “the art of giving students
problems to solve that they haven’t been taught how to
solve.”



COMMON CORE: MATHEMATICAL PRACTICES

2. Reason abstractly and quantitatively.
Mathematically proficient students make sense of the
quantities and their relationships in problem situations.
. . . Students bring two complementary abilities to bear on
problems involving quantitative relationships: the ability
to decontextualize. . . and the ability to contextualize. . . .
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2. Reason abstractly and quantitatively.
Mathematically proficient students make sense of the
quantities and their relationships in problem situations.
. . . Students bring two complementary abilities to bear on
problems involving quantitative relationships: the ability
to decontextualize. . . and the ability to contextualize. . . .

In Algebra 1, variables start as placeholders for numbers,
and problems should refer back to the quantities
represented. Later, symbols become contexts in their own
right, such as polynomial multiplication used to model
probability problems. Tying calculations back to contexts is
always relevant.



COMMON CORE: MATHEMATICAL PRACTICES

3. Construct viable arguments and critique the reasoning
of others.
Mathematically proficient students understand and use
stated assumptions, definitions, and previously established
results in constructing arguments. They make conjectures
and build a logical progression of statements to explore the
truth of their conjectures. . . .
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3. Construct viable arguments and critique the reasoning
of others.
Mathematically proficient students understand and use
stated assumptions, definitions, and previously established
results in constructing arguments. They make conjectures
and build a logical progression of statements to explore the
truth of their conjectures. . . .

The roles of proof and justification are not limited to a
geometry course. Students should read and understand
arguments while learning to construct them. Proofs and
methods of construction should appear in algebra and
geometry. Problems should ask students to critique and
repair common errors in reasoning, or to read and analyze
an argument between students.



COMMON CORE: MATHEMATICAL PRACTICES

4. Model with mathematics.
Mathematically proficient students who can apply what
they know are comfortable making assumptions and
approximations to simplify a complicated situation,
realizing that these may need revision later.
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4. Model with mathematics.
Mathematically proficient students who can apply what
they know are comfortable making assumptions and
approximations to simplify a complicated situation,
realizing that these may need revision later.

Students build mathematical models using functions,
equations, graphs, tables, and technology. They also use
mathematics to build approximate models for data,
including a development of how the line of best fit is
calculated. Students decide when a model is appropriate
and determine limitations.



COMMON CORE: MATHEMATICAL PRACTICES

5. Use appropriate tools strategically.
Mathematically proficient students consider the available
tools when solving a mathematical problem. These tools
might include pencil and paper, concrete models, ruler,
protractor, calculator, spreadsheet, computer algebra
system, statistical package, or dynamic geometry
software. . . .
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5. Use appropriate tools strategically.
Mathematically proficient students consider the available
tools when solving a mathematical problem. These tools
might include pencil and paper, concrete models, ruler,
protractor, calculator, spreadsheet, computer algebra
system, statistical package, or dynamic geometry
software. . . .

Curricula should integrates tools and technology
throughout. Students use technology to experiment with
mathematical objects, to make tractable and enhance
historically technical topics, and to build models of
mathematical objects (both algebraic and geometric).
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6. Attend to precision.
Mathematically proficient students try to communicate
precisely to others. They try to use clear definitions in
discussion with others and in their own reasoning. . . .



COMMON CORE: MATHEMATICAL PRACTICES

6. Attend to precision.
Mathematically proficient students try to communicate
precisely to others. They try to use clear definitions in
discussion with others and in their own reasoning. . . .

Definitions can be capstones. Students work toward
greater precision in definitions as they move through a
topic, even between courses. Students read dialogues or
watch videos about other students wrestling with precise
language. Students learn to critique definitions by looking
for counterexamples, testing to see if the definition
captures what they want it to.



COMMON CORE: MATHEMATICAL PRACTICES

7. Look for and make use of structure.
Mathematically proficient students look closely to discern a
pattern or structure. . . . For example, they can see
5− 3(x − y)2 as 5 minus a positive number times a square
and use that to realize that its value cannot be more than 5
for any real numbers x and y .
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7. Look for and make use of structure.
Mathematically proficient students look closely to discern a
pattern or structure. . . . For example, they can see
5− 3(x − y)2 as 5 minus a positive number times a square
and use that to realize that its value cannot be more than 5
for any real numbers x and y .

Students look for hidden structure in arithmetic tables, and
“chunk” portions of equations and expressions to explore
their properties. Students transform area formulas to look
for new meanings and connections.



COMMON CORE: MATHEMATICAL PRACTICES

8. Look for and express regularity in repeated reasoning.
By paying attention to the calculation of slope as they
repeatedly check whether points are on the line through
(1,2) with slope 3, middle school students might abstract
the equation (y − 1)/(x − 2) = 3. Noticing the regularity in
the way terms cancel when expanding (x − 1)(x + 1),
(x − 1)(x2 + x + 1), and(x − 1)(x3 + x2 + x + 1) might lead
them to the general formula for the sum of a geometric
series.
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8. Look for and express regularity in repeated reasoning.
By paying attention to the calculation of slope as they
repeatedly check whether points are on the line through
(1,2) with slope 3, middle school students might abstract
the equation (y − 1)/(x − 2) = 3. Noticing the regularity in
the way terms cancel when expanding (x − 1)(x + 1),
(x − 1)(x2 + x + 1), and(x − 1)(x3 + x2 + x + 1) might lead
them to the general formula for the sum of a geometric
series.

This is what the opening problems have in common. This
practice is a general-purpose habit that will serve students
well in all their technical endeavors. Adults use this
behavior all the time. Let’s dig deeper. . .



SOME THORNY TOPICS IN ALGEBRA

1 Students have trouble expressing generality with algebraic
notation.

2 This is especially prevalent when they have to set up
equations to solve word problems.

3 Many students have difficulty with slope, graphing lines,
and finding equations of lines.

4 Building and using algebraic functions is another place
where students struggle.
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1 Students have trouble expressing generality with algebraic
notation.

2 This is especially prevalent when they have to set up
equations to solve word problems.

3 Many students have difficulty with slope, graphing lines,
and finding equations of lines.

4 Building and using algebraic functions is another place
where students struggle.

This list looks like a collection of disparate topics—using
notation, solving word problems, . . . .



SOME THORNY TOPICS IN ALGEBRA

But if one looks underneath the topics to the mathematical
habits that would help students master them, one finds a
remarkable similarity:

A key ingredient in such a mastery is the reasoning habit of
looking for and expressing regularity in repeated reasoning.

This habit manifests itself when one is performing the
same calculation over and over and begins to notice the
“rhythm” in the operations.
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But if one looks underneath the topics to the mathematical
habits that would help students master them, one finds a
remarkable similarity:

A key ingredient in such a mastery is the reasoning habit of
looking for and expressing regularity in repeated reasoning.

This habit manifests itself when one is performing the
same calculation over and over and begins to notice the
“rhythm” in the operations.

Articulating this regularity leads to a generic algorithm,
typically expressed with algebraic symbolism, that can be
applied to any instance and that can be transformed to
reveal additional meaning, often leading to a solution of the
problem at hand.



EXAMPLE A: THE DREADED ALGEBRA WORD

PROBLEM

Think about how hard it is for students to set up an equation
that can be used to solve an algebra word problem. Some
reasons for the difficulties include reading levels and unfamiliar
contexts. But there has to be more to it than these surface
features.

Consider, for example, the following two problems.
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1 Nancy drives from Boston to Chicago at an average speed
of 50mph and returns at an average speed of 60mph. The
driving distance from Boston to Chicago is is 990 miles.
For how many hours is Nancy on the road?

2 Nancy drives from Boston to Chicago at an average speed
of 50mph and returns at an average speed of 60mph.
Nancy is on the road for 36 hours. What is the driving
distance from Boston to Chicago?
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PROBLEM

1 Nancy drives from Boston to Chicago at an average speed
of 50mph and returns at an average speed of 60mph. The
driving distance from Boston to Chicago is is 990 miles.
For how many hours is Nancy on the road?

2 Nancy drives from Boston to Chicago at an average speed
of 50mph and returns at an average speed of 60mph.
Nancy is on the road for 36 hours. What is the driving
distance from Boston to Chicago?

The problems have identical reading levels, and the context is
the same in each. But teachers report that many students who
can solve problem 1 are baffled by problem 2.



EXAMPLE A: THE DREADED WORD PROBLEM

This is where the reasoning habit of “expressing the rhythm” in
a calculation can be of great use. The basic idea:

Guess at an answer to problem 2, and

check your guess as if you were working on problem 1,
keeping track of your steps.
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This is where the reasoning habit of “expressing the rhythm” in
a calculation can be of great use. The basic idea:

Guess at an answer to problem 2, and

check your guess as if you were working on problem 1,
keeping track of your steps.

The purpose of the guess is not to stumble on (or to
approximate) the correct answer; rather, it is to help you
construct a “checking algorithm” that will work for any guess.
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checking algorithm in algebraic symbols. For example:
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EXAMPLE A: THE DREADED WORD PROBLEM

Problem 2: Nancy drives over at an average speed of 50mph and
returns at an average of 60mph. He’s on the road for 36 hours. What
is the driving distance?
So, you take several guesses until you are able to express your
checking algorithm in algebraic symbols. For example:

Suppose the distance is 1000 miles.

How do I check the guess of 1000 miles? I divide 1000 by
50. Then I divide 1000 by 60. Then I add my answers
together, to see if I get 36. I don’t.

So, check another number—say 950. 950 divided by 50
plus 950 divided by 60. Is that 36?

No, but a general method is evolving that will allow me
to check any guess.



EXAMPLE A: THE DREADED WORD PROBLEM

My guess-checker is

guess
50

+
guess

60
?
= 36

So my equation is

guess
50

+
guess

60
= 36

or, letting x stand for the unknown correct guess,

x
50

+
x
60

= 36



EXAMPLE A: THE DREADED WORD PROBLEM

Here’s some student work that shows how the process
develops:
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The phenomenon was first noticed in precalculus . . .
Graph

16 x2 − 96 x + 25 y2 − 100 y − 156 = 0

16 x2−96 x+25 y2−100 y−156 = 0⇒
(x − 3)2

25
+
(y − 2)2

16
= 1

(x − 3)2

25
+

(y − 2)2

16
= 1⇒
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+

(y − 2)2

16
= 1



EXAMPLE B: EQUATIONS FOR LINES

(x − 3)2

25
+

(y − 2)2

16
= 1

Is (7.5,3.75) on the graph?
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(x − 3)2

25
+

(y − 2)2

16
= 1

Is (7.5,3.75) on the graph?
This led to the idea that “equations are point testers.”
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Suppose a student, new to algebra and with no formulas in
tow, is asked to find the equation of the vertical line ℓ that
passes through (5,4).
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To see if a point is on ℓ, you check that its
x-coordinate is 5.



EXAMPLE B: EQUATIONS FOR LINES

Suppose a student, new to algebra and with no formulas in
tow, is asked to find the equation of the vertical line ℓ that
passes through (5,4).

Students can draw the line, and, just as in the word
problem example, they can guess at some points and
check to see if they are on ℓ.

Trying some points like (5,1), (3,4), (2,2), and (5,17)
leads to a generic guess-checker:

To see if a point is on ℓ, you check that its
x-coordinate is 5.

This leads to a guess-checker: x ?
= 5 and the equation

x = 5
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What about lines for which there is no simple
guess-checker? The idea is to find a geometric
characterization of such a line and then to develop a
guess-checker based on that characterization. One such
characterization uses slope.



EXAMPLE B: EQUATIONS FOR LINES

What about lines for which there is no simple
guess-checker? The idea is to find a geometric
characterization of such a line and then to develop a
guess-checker based on that characterization. One such
characterization uses slope.

In first-year algebra, students study slope, and one fact
about slope that often comes up is that three points on the
coordinate plane, not all on the same vertical line, are
collinear if and only if the slope between any two of them is
the same.



EXAMPLE B: EQUATIONS FOR LINES

If we let m(A,B) denote the slope between A and B (calculated
as change in y-height divided by change in x-run), then the
collinearity condition can be stated like this:

Basic assumption: A, B, and C are
collinear⇔ m(A,B) = m(B,C)

10

8

6

4

2

-2

5 10

A

B

C



EXAMPLE B: EQUATIONS FOR LINES

What is an equation for ℓ =
←→
AB if A = (2,−1) and B = (6,7)?
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A:  (2,-1)

B:  (6,7)
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What is an equation for ℓ =
←→
AB if A = (2,−1) and B = (6,7)?

10

8

6

4

2

-2

5 10

A:  (2,-1)

B:  (6,7)

Try some points, keeping track of the steps. . .
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A = (2,−1) and
B = (6,7)

m(A,B) = 2
10

8

6

4
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B:  (6,7)
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A = (2,−1) and
B = (6,7)

m(A,B) = 2
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B:  (6,7)

Test C = (3,4):

m(C,B) = 4−7
3−6

?
= 2⇒ Nope
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A = (2,−1) and
B = (6,7)

m(A,B) = 2
10

8

6

4

2

-2

5 10

A:  (2,-1)

B:  (6,7)

Test C = (3,4):

m(C,B) = 4−7
3−6

?
= 2⇒ Nope

Test D = (5,5):

m(D,B) = 5−7
5−6

?
= 2⇒ Yup

The “guess-checker?”
Test P = (x , y):

m(P,B) = y−7
x−6

?
= 2

And an equation is y−7
x−6=2



OTHER EXAMPLES WHERE THIS HABIT IS USEFUL

Finding lines of best fit

Building expressions (“three less than a number”)

Fitting functions to tables of data

Deriving the quadratic formula

Establishing identities in Pascal’s triangle

Using recursive definitions in a CAS or spreadsheet

...
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FACTORING ACROSS THE AGES
FROM A POPULAR TEXT (∼ 1980)

“Factoring Pattern for x2 + bx + c, c Negative”

Factor. Check by multiplying factors. If the polynomial is not
factorable, write “prime.”

1. a2 + 4a− 5 2. x2 − 2x − 3 3. y2 − 5y − 6
4. b2 + 2b − 15 5. c2 − 11c − 10 6. r2 − 16r − 28
7. x2 − 6x − 18 8. y2 − 10c − 24 9. a2 + 2a− 35
10. k2 − 2k − 20 11. z2 + 5z − 36 12. r2 − 3r − 40
13. p2 − 4p − 21 14. a2 + 3a− 54 15. y2 − 5y − 30
16. z2 − z − 72 17. a2 − ab − 30b2 18. k2 − 11kd − 60d2

19. p2 − 5pq − 50q2 20. a2 − 4ab − 77b2 21. y2 − 2yz − 3z2

22. s2 + 14st − 72t2 23. x2 − 9xy − 22y2 24. p2 − pq − 72q2
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FACTORING ACROSS THE AGES
FROM A PUBLISHED TEXT (2010)

To factor a trinomial of the form ax2 + bx + c where a > 0,
follow these steps:

A B C
F H D
G I E

1 Identify the values of a, b, c. Put a in Box A and c in
Box B. Put the product of a and c in Box C.

2 List the factors of the number from Box C and identify the
pair whose sum is b. Put the two factors you find in Box D
and E .

3 Find the greatest common factor of Boxes A [sic] and E
and put it in box G.



FROM A PUBLISHED TEXT (2010)

A B C
F H D
G I E

4 In Box F , place the number you multiply by Box G to get
Box A.

5 In Box H, place the number you multiply by Box F to get
Box D.

6 In Box I, place the number you multiply by Box G to get
Box E .

Solution: The binomial factors whose product gives the
trinomial are (Fx + I)(Gx + H).
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Factoring monic quadratics:
“Sum-Product” problems

x2 + 14x + 48
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Factoring monic quadratics:
“Sum-Product” problems

x2 + 14x + 48

(x + a)(x + b) = x2 + (a + b)x + ab

so. . .
Find two numbers whose sum is 14 and whose product is 48.



FACTORING USING THE STRUCTURE PRACTICE

Factoring monic quadratics:
“Sum-Product” problems

x2 + 14x + 48

(x + a)(x + b) = x2 + (a + b)x + ab

so. . .
Find two numbers whose sum is 14 and whose product is 48.

(x + 6)(x + 8)
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FACTORING USING THE STRUCTURE PRACTICE

This technique is perfectly general and can be used to
transform a polynomial of any degree into one whose
leading coefficient is 1.

And it fits into the larger landscape of the theory of
equations that shows how to use similar transformations to

remove terms
transform roots
derive “formulas” for equations of degree 3 and 4
extend the notion of discriminant to higher degrees



OTHER EXAMPLES WHERE CHUNKING IS USEFUL

Completing the square and removing terms

Solving trig equations

Analyzing conics and other curves

All over calculus

Interpreting results from a computer algebra system

...



FOR MORE INFORMATION
ABOUT MPI PROGRAMS

Contact Melody Hachey:
mhachey@edc.org
edc.org/cme/mpi
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